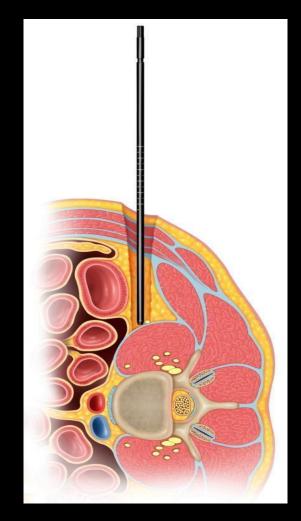

Anterior Approaches for Lumbar Interbody Fusion


Glen Manzano, MD

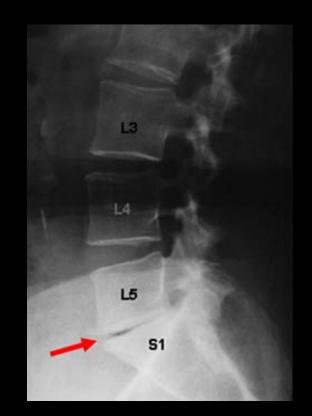
Anterior Techniques

• ALIF

• Lateral transpsoas approaches (XLIF/DLIF)

Anterior Approaches - Contraindications

- ALIF
 - Contraindications
 - Calcified aorta
 - Prior vascular reconstructive surgery
 - Prior intra-abdominal or retroperitoneal surgery
 - History of severe pelvic inflammatory disease
 - Prior anterior spinal surgery
- Transpsoas
 - Contraindications
 - At L5/S1 and sometimes at L4/5 because of obstruction from iliac crest
 - Prior retroperitoneal surgery or scarring



Clinical Presentation DDD

- 20 -50 year-old, recurrent or persistent back pain
- Pain
 - Dull ache in lower back
 - Often involves buttocks and sacroiliac joints
 - Exacerbated with flexion
 - Worsened with prolonged sitting or walking
 - Radiculopathy may be seen late in disease due to disc collapse
 - Claudication only seen with concomitant stenosis
- Exam
 - Decreased back range of motion, flexion
 - Paraspinal muscle and sacroiliac joint tenderness
 - Normal sensorimotor exam
 - Normal reflexes
 - Generally negative straight leg raise

Radiographic Findings DDD

- Plain X-rays
 - Disc space narrowing
 - Endplate sclerosis
 - Osteophytes
 - Advanced secondary spondylolisthesis

UNIVERSITY OF MIAMI

of MEDICINE


FR SCHOOL

Radiographic Findings DDD

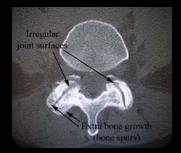
• MRI

- "High intensity zone" (annular tear)
 - Radial tear from nucleus to outer posterior annulus

- Dark disc
- Endplate signal changes (Modic)
 - Stage I edema
 - Dark on T1, bright on T2
 - Stage II fatty degeneration
 - Bright on T1, intermediate on T2
 - Stage III advance degenerative changes and endplate sclerosis
 - Dark on T1 and T2
- Images from *Rahme R et al . The Modic Vertebral Endplate and Marrow Changes:* Pathologic Significance and Relation to Low Back Pain and Segmental Instability of the Lumbar Spine. *AJNR 2008 39: 838-842*.

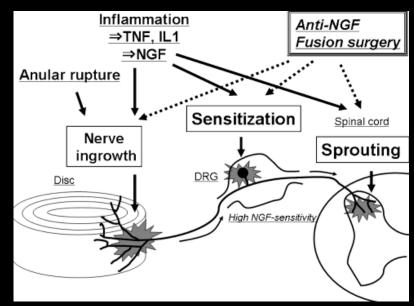
Guidelines Committee

January 2003


- Committee formed by the leadership of the American Association of Neurological Surgeons and Congress of Neurological Surgeons Joint Section on Disorders of Spine and Peripheral Nerves
- 12 orthopedic and neurosurgical spine surgeons active in the Joint Section and/or North American Spine Society
- Perform an evidence-based review of the literature on lumbar fusion for degenerative spine disease and formulate treatment recommendations

One or Two-Level Degenerative Disease without Stenosis or Spondylolisthesis

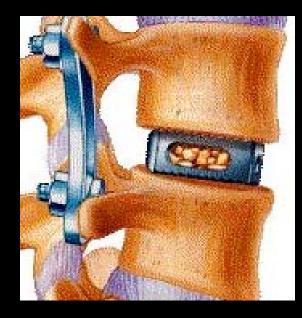
- Standard
 - Lumbar fusion recommended for patients with disabling low back pain due to one or two-level degenerative disease without stenos or spondylolisthesis
 - 2001 Fritzell et al.
 - 294 surgical candidates randomized; 2-year follow-up
 - PT, education, pain relieving measures vs. PLF, PLF + pedicle screws, or interbody fusion + PLF + pedicle screws
 - Surgical group statistically significant better results in:
 - Outcome measures (pain VAS, ODI, Million VAS, GFS)
 - Return to work status
 - Patient satisfaction
 - Independent analysis by second spine surgeon
- Option
 - Intensive physical therapy and cognitive therapy



Fusion for DDD

- Posterolateral fusion
 - Patients with some level of residual discogenic pain due to micromotion

Eur Spine J. 2008 December; 17(Suppl 4): 428-431

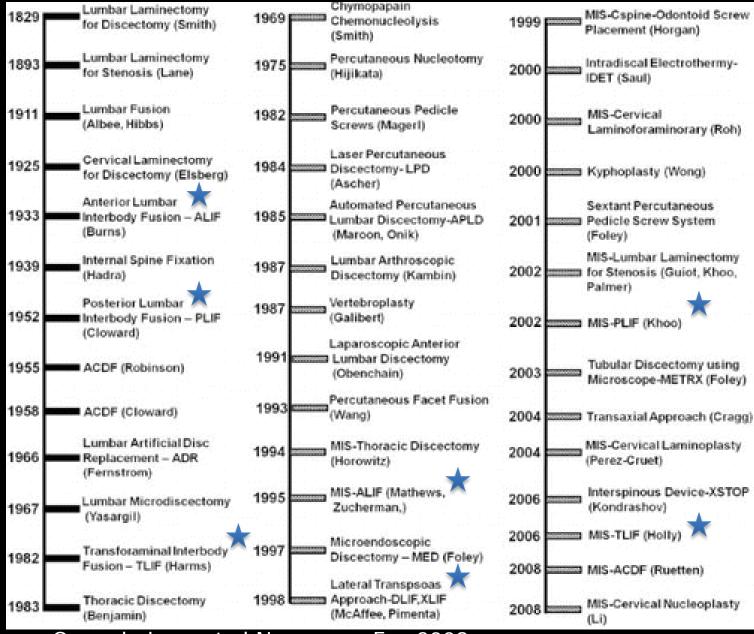


UNIVERSITY OF MIAMI

of MEDICINE

Fusion for DDD

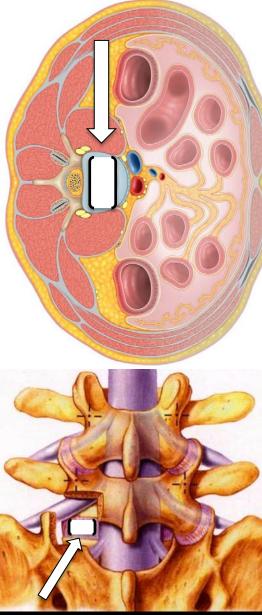
- Interbody techniques
 - Remove pain generator
 - Large surface area for fusion where majority of spinal load bearing occurs
 - 90% of the surface area
 - 80% of the load
 - Compressive force through graft
 - Correction coronal and sagittal alignment



UNIVERSITY OF MIAMI

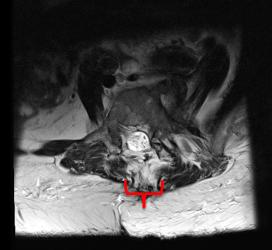
of MEDICINE

History – Minimally Invasive Spine Surgery


Oppenheimer et al Neurosurg Foc 2009

Technical Goals LIF

- Complete discectomy
- Place large graft
 - Restoration of disc height
 Indirect decompression
 - Restablish/maintain lordosis
 - Maximize surface area for fusion
 - Minimize risk of subsidence



PLIF/TLIF

- Posterior interbody techniques (PLIF TLIF)
 - Problems
 - Muscle dissection, denervation
 - Acute postop pain
 - Blood loss
 - Longer length of stay
 - Narcotic requirements
 - Limited postop mobility
 - Perioperative complications
 - Chronic dysfunction
 - Muscle atrophy
 - Core deconditioning
 - Chronic pain

PLIF/TLIF

- Posterior interbody techniques (PLIF TLIF)
 - Problems
 - Limited window to disc space
 - Thecal sac/nerve root retraction
 - Weakness (2-7%)
 - Postop neuralgia (5%)
 - Dural tears (5-20%)

PLIF/TLIF

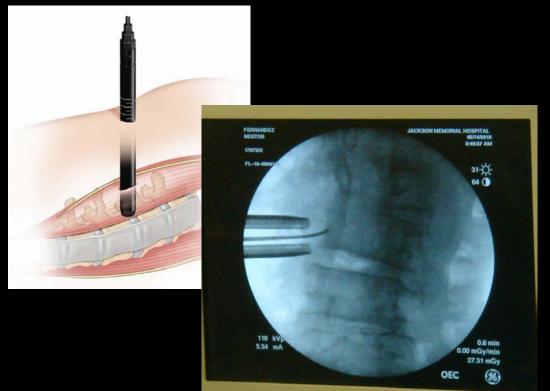
- Posterior interbody techniques (PLIF TLIF)
 - Problems
 - Graft size vs. nerve root injury vs endplate fracture
 - Suboptimal restoration of disc height and surface area for fusion
 - Poor visualization of disc space/endplates
 - Limited endplate preparation for fusion
 - Endplate damage/fractures graft subsidence
 - Time
 - Blood loss

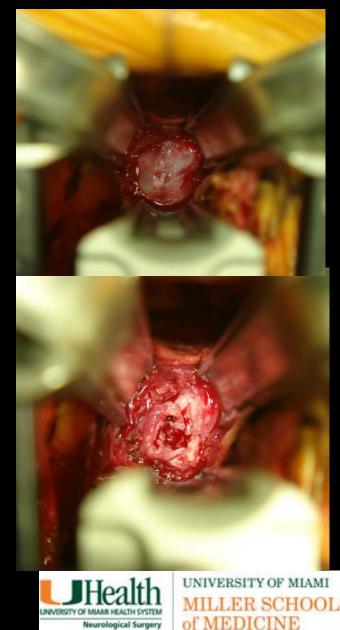
UNIVERSITY OF MIAMI

of MEDICINE

Comparison Implant Dimensions

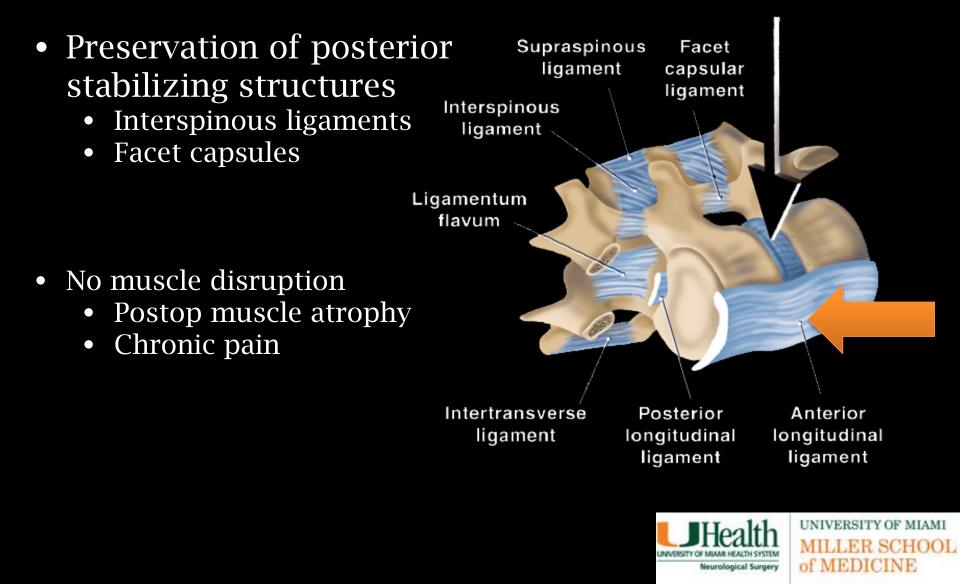
IMPLANT TYPE	HEIGHT (mm)	ANTERO- POSTERIOR (mm)	MEDIO- LATERAL (mm)	LORDOSIS (degrees)
XLIF	8 – 16	18 - 26	45 - 60	0 - 10
ALIF	10 - 20	23 - 30	32 - 42	8 - 12
PLIF, TLIF	6 - 12	22 - 32	8 - 10	0 - 8





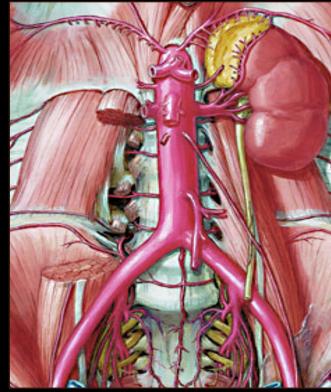
Advantages Anterior Approaches

- More complete discectomy
- Better endplate preparation



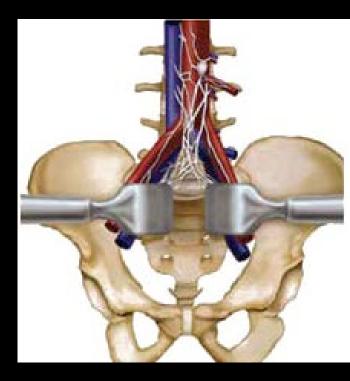
Advantages Anterior Approaches

- Larger graft placement without manipulation of nerve roots
 - Deformity correction
 - Indirect decompression
 - Greater fusion surface area


Advantages Anterior Approaches

ALIF - Complications

- Rates variable highly surgeon dependent
 - Vascular complications of exposure for anterior lumbar interbody fusion. J Vasc Surg. 2010 Apr;51(4):946-50;
 - 212 ALIF exposures
 - 2% rate of "serious" vascular complication
 - 1 arterial injury required thrombectomy and stent
 - 4 venous injuries required multi-suture repair


UNIVERSITY OF MIAMI

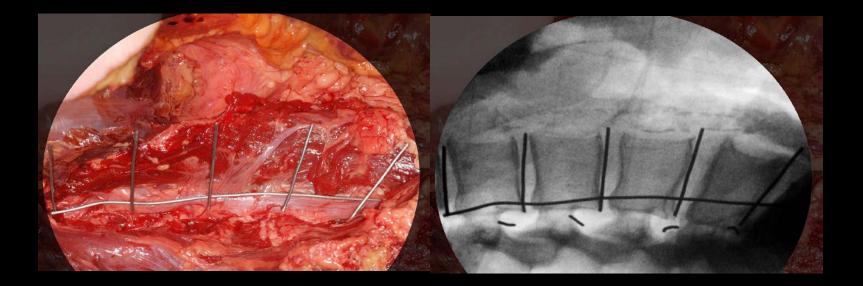
of MEDICINE

ALIF - Complications

- Retrograde ejaculation
 - Most series < 1% to 7%
 - Much higher with transperitoneal approaches and with laparoscopic approaches
 - Blunt dissection versus electrocautery
 - Large majority of patients recover within 6 – 12 months

UNIVERSITY OF MIAMI

of MEDICINE

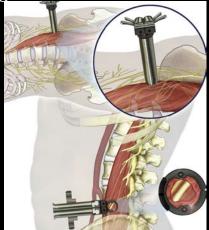

- Bowel
- Ureter

Extreme Lateral - Complications


- Damage to lumbosacral plexus which progressively migrates anteriorly beginning at L1/2 level
- Psoas muscle injury and pain
- Traction injury to plexus postop dysesthesias



Extreme Lateral - Complications


- New procedure introduced 2001
 - Reporting of complications has been inconsistent 3% -60%)
 - Genitofemoral, ilioinguinal or lateral femoral cutaneous nerve injuries
 - Thigh numbness, paresthesias
 - Femoral nerve
 - Leg weakness
- An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion.J Neurosurg Spine 15:11–18, 2011 Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
 - 62% patients had thigh symptoms postop mostly numbress and dysesthesias
 - 23% had weakness
 - 50% had complete resolution at 3 months
 - 90% complete resolution at 1 year.

Extreme Lateral - Complications

- Learning curve
 - Supra-psoas Shallow Docking in Lateral Interbody Fusion Neurosurgery 73[ONS Suppl 1]:ons48-ons52, 2013
 - Avoid blind dilation through psoas muscle fibers

- Complications in 775 XLIF cases. WB Rodgers. Spine Vol 10 (9). Supplement S95
 - 7.4% overall complication rate
 - 4 neural complications

 Outcomes After ALIF vs TLIF For Treatment of Symtomatic L5-S1 Spondylolisthesis: A Prospective, Multi-Institutional Comparative Effectiveness Study Neurosurgery. 60():171, August 2013

Higher complication rates for TLIF (12.3 vs 7.8%)

ALIF more rapid reduction in 1-year back and leg pain VAS scores

• Comparison of anterior- and posterior-approach instrumented lumbar interbody fusion for spondylolisthesis J Neurosurg Spine. 2007 Jul;7(1):21-6

Adjacent level disease in 44% of ALIF and 83% of PLIF

Conclusions

- Both anterior and posterior approaches for interbody fusion are associated with good fusion rates and outcomes in patients with symptomatic lumbar degenerative disease.
- Anterior approaches allow better access to and visualization of the disc and endplates which facilitate:
 - More complete discectomy
 - Larger surface area for fusion
 - Better endplate preparation
 - Larger graft placement for disc height restoration and lordosis
- With a good access surgical team, the complications associated with ALIF are minimal
- Extreme lateral interbody fusion is a relatively new procedure. As surgeons become more proficient in the operation and as surgical technique is refined, sensory dysesthesias and psoas trauma associated with the procedure are becoming less prevalent.